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Abstract. This study presents numerical and asymptotic algorithms for deriving wave characteristics of the free
oscillations of a vertically non-homogenous fluid. The bathymetric density distribution is reconstructed from the
dispersion curves of free oscillations in an non-homogenous fluid. Measurement-accuracy requirements on the
input data are studied in order to obtain a sufficiently accurate bathymetric density of the non-homogenous fluid.
These methods are shown to be applicable to identifying geometrical and physical non-homogeneities of rods and
elastic layers by their resonant frequencies.

Key words: inverse spectral problem, non-homogeneous medium, parameter reconstruction

1. Introduction

Research on internal gravity waves in the ocean is one of the important challenges of modern
oceanology. The investigation of internal waves was significantly stimulated by intensively devel-
oping remote sensing of the ocean. The internal waves are manifested on the free surface in the
form of sun glitters. From the motion of these glitters, the phase velocity of internal waves can
be derived as well as their length. From these parameters, the bathymetric density-field distri-
bution is obtained, thus making it possible to locate anomalous densities (certain submerged
objects in the ocean). Examples of such objects are fish shoals, submarines, bathyscaphes, scuba
divers, sunken ships, etc.

Similar problems arise for non-destructive testing of building structures when the resonant
frequencies of their separate structural components provide the basis for a general conclusion
about the density and structure of the entire building unit. In geophysics, such problems are
connected with mineral prospecting. In this case, the soil, rock, or water body, are set into
vibration, and then the nature of sub-bottom or rock non-homogeneity is interpreted based
on surface-vibration measurements.

All the above-mentioned problems fall in the category of inverse problems of continuum
mechanics. The present work is devoted to Sturm-Liouville inverse spectral problems, i.e.,
problems of obtaining a variable coefficient of a Sturm-Liouville differential operator from
its eigenvalues.

A survey of publications devoted to Sturm-Liouville inverse problems is given in [1].
According to this survey, the first significant result in this field was obtained by Ambar-
tsumian in 1929 who showed that in the general case with no conditions imposed, the



340 Ye.A. Anosova et al.

Sturm-Liouville operator is determined ambiguously. The author suggested employing two
spectra of the Sturm-Liouville problem under different boundary conditions. In 1946 this was
followed by Borg’s first systematic study of the inverse problem for the Sturm-Liouville oper-
ator. He showed that the Sturm-Liouville operator is determined from two spectra (under
different boundary conditions). Further considerable progress in the theory of inverse prob-
lems, as is shown in [1], was attained by Chudov in 1949, Marchenko in 1952, Krein in 1951,
Ghelfand and Levitan in 1951, Gasimov in 1964 and Tikhonov in 1963.

The first studies using aerospace radar imaging of an ocean column were performed by the
team of the Maritime Institution of Hydrophysics (Ukrainian Academy of Sciences) headed
by B.A. Nelepo. The treatise [2] generalizes the most important findings in this field and show
results that were obtained experimentally by making use of the Soviet Artificial Earth Satel-
lites (AES) operating in optical and microwave ranges. This study also analyses the detected
ocean regions with increased bio-productivity, presents calculations of the thermodynamic
parameters of the ocean active layer and analyses the physical principles of ocean remote
sensing by AES.

As reported in [2] Grogsky and Kudryavtsev in their studies laid the foundations of a
theoretical and numerical determination of the fluid non-homogeneity structure based on the
law of internal-wave dispersion, which had been assumed as known. They approximated the
Brunt-Vaisala (buoyancy) frequency by a 7-parameter piecewise constant function with given
locations of the function discontinuities. The intensities for each of its parts were assumed
unknown. The solution of the Sturm-Liouville problem by the finite-difference method is
reduced to obtaining the matrix eigenvalues. By varying buoyancy frequency parameters, their
values were obtained, for which these frequencies were close to the pre-specified values.

Studies by Govorukhina, Potetunko, Ryndina, Cherkesov and Chuprakov reported in 1989
were also devoted to solving inverse problems of fluid wave motion; see [3]. In their work,
the Brunt-Vaisala frequency with a single pycnocline was also approximated by a 7-parameter
function, but unlike in publications by Grodsky and Kudryavtsev, the Brunt-Vaisala frequency
with a single pycnocline was described by a continuous function and the pycnocline posi-
tion was considered unknown. Those seven parameters and the pycnocline position were
obtained by solving the spectral problem by the finite-difference method and by further apply-
ing the minimizing Powel method to find the unknown coefficient values of the finite-differ-
ence matrix. The accuracy of the reconstructed functions of the Brunt-Vaisala frequencies for
specific examples was evaluated employing the metrics C and L1.

The same treatise [3] suggested several methods for solving the inverse problems of recon-
structing the Brunt-Vaisala frequency. It is obtained with a certain error caused by inaccurate
measurement of the eigenfrequency due to instrumental error and faulty in situ experimental
measurements. Data for a certain region of the World Ocean are presented. For this particular
region, a problem of constructing the law of internal-wave dispersion is solved including con-
fidence intervals. Test calculations are performed for some specific examples of the Brunt-Vai-
sala frequency. The uniqueness conditions of the inverse-problem solution are studied, as well
as the effect of the input-data error on the accuracy of the Brunt-Vaisala frequency recon-
struction employing the metrics C, L1, L2.

Reference [4] presents the results of statistically processed in situ measurements of
temperature and salinity for a particular region of the World Ocean. The error in the buoy-
ancy frequency is obtained by employing in the Sturm-Liouville problems a variable coeffi-
cient of a differential operator. With allowance for this error, the confidence intervals for the
eigenfrequencies of the free oscillations of a vertically stratified ocean are found. Stratification
parameters are reconstructed while allowing for the error of the frequencies measurement.
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In order to reconstruct the frequency, Ryndina [5] writes the buoyancy and the problem
solution in terms of a Green’s function. The problem is reduced to the solution of a nonlin-
ear integral equation. Parameterisation classes are shown, for which this solution is unique.
Examples of non-unique (ambiguous) solutions of the problem are given.

In [6], the Brunt-Vaisala frequency is reconstructed under its piecewise-linear approxima-
tion. The problems of the solution uniqueness and accuracy of the considered inverse prob-
lems are studied. In [7], the inverse spectral problem of obtaining fluid non-homogeneity is
solved. A number of publications in the journal Inverse Problems are also devoted to the solu-
tion of inverse problems of the Sturm-Liouville type.

The authors of [8, 9] suggest various numerical methods for solving the problem under
consideration. Applicability and convergence conditions are presented. The significance of the
accuracy of the input data is evaluated. The accuracy of the reconstructed variable potential
of the second-order differential equation is studied. Test examples are given to illustrate the
application of these methods.

References [10, 11] study the existence and uniqueness of the solution of the inverse prob-
lem. Classical Sturm-Liouville equations are considered under various supplementary con-
ditions. Reference [12] is devoted to the asymptotic solution of the inverse Sturm-Liouville
problem. The reconstructed potential is taken to be singular. In [13] the inverse spectral prob-
lem is solved by reducing it to an integral equation. The analytical solution of the inverse
Sturm-Liouville problem is put forward in [14]. Here the authors consider the problem of
determining the regular Sturm-Liouville operator from two known spectra. In Borg’s state-
ment, they obtain explicit formulae for the solution of the inverse problem.

2. Oceanographically stated problem of defining the law of ocean stratification

In order to study the problem about the propagation of internal gravity waves in the
ocean, we employ the model of an ideal non-homogeneous incompressible and thermally
non-conductive fluid. As is known, when studying a hydrodynamic process in the ocean,
dissipative phenomena, such as viscosity, friction, thermal conductivity, and diffusion, can
be neglected. Such a dissipation-free approximation would be justified for the motion on a
large-enough scale. In this case the range of time variation is assumed to be limited. Con-
sider the theory of internal waves in an adiabatic approximation. Let us neglect the pro-
cess of mass and energy exchange in the ocean over the time that waves are generated and
propagate.

Consider the equations of motion of a vertically stratified ocean. The coordinate system
is assumed to be rotating and fixed to the Earth’s surface. The equations are as follows
[15, Equations 2.34–2.36, pp. 36]:

ρ0

(
∂ V̄

∂t
+ f z0 × V̄

)
=−∇ P −ρgz0, div V̄ =0,

∂ρ0

∂z
+ρ0z ·Vz =0. (1)

Here, V̄ is the velocity vector in the Cartesian coordinate system, P stands for the deviation
of the hydrodynamic pressure from the equilibrium pressure, f =2Ω sin ϕ denotes the Coriolis
parameter (Ω is the earth’s angular velocity, ϕ is the latitude), ρ designates the deviation of
the fluid density from the equilibrium fluid density ρ0, g is gravitational acceleration, z0 is an
ort (unit vector) directed along the z-axis (vertically upwards and counter-gravitationally).
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At the bottom z = −H = const the no-flux condition is observed. On the free surface of
the ocean the following kinematic and dynamic conditions are fulfilled:

Vz |z=−H =0; VZ |z=ζ = dξ
dt
, P(x, y, z, t)|z=ξ =0. (2)

The system (1) and boundary conditions (2) are linearized and the solution is sought in the
form of running waves:

{Vx ,Vy,Vz, P, ρ, ξ)={U (z),V (z),W (z), P(z), R(z), Z}ei(k1x+k2 y−ωt), (3)

where k1, k2 are wave numbers and ω is the frequency.
The problem under consideration is reduced to a spectral problem. The amplitude func-

tion of the vertical component of the fluid particles velocity is unknown. The equation of this
problem are:

W ′′(z)− µ(z)

g
W ′(z)+ µ(z)−ω2

ω2 − f 2
k2W (z)=0, (4a)

W ′(0)= gk2

ω2 − f 2
W (0) , W (−H)=0; W (0)=0, W (−H)=0. (4b, c)

Here, µ(z)= gρ′
0/ρ0 is the squared buoyancy frequency, k2 = k2

1 + k2
2,W (z) is the amplitude

function of the vertical component of the velocity of the fluid particles. The conditions (4b)
are full boundary conditions. They do not distinguish between surface waves and internal
waves. The conditions (4c) correspond to the “rigid lid” approximation. They filter out inter-
nal waves from the surface waves.

3. Derivation of frequency equations by a power-series method

Consider Problem (4) in the Boussinesq approximation. According to this approximation,
the term W ′(z)µ(z)/g in the equation is omitted, and Problem (4) assumes the following
form:

W ′′(z)+ µ(z)−ω2

ω2 − f 2
k2W (z)=0, (5a)

W ′(0)= gk2

ω2 − f 2
W (0), W (−H)=0; W (0)=0, W (−H)=0. (5b, c)

Let us introduce a dimensionless variable z = −Hζ and define µ(z) = µ̃(ζ ) ,W (z) =
W̃ (ζ ), k H = k̃. Henceforth the tilda “∼” will be omitted. By substituting ζ for z, we obtain
the following statements of this problem:

W ′′(z)+ µ(z)

g
W ′(z)+ µ(z)−ω2

ω2 − f 2
k2W (z)=0, (6a)

W ′(0)=− gk2

ω2 − f 2
W (0), W (1)=0; W (0)=0, W (1)=0. (6b, c)
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In the Boussinesq approximation:

W ′′(z)+ µ(z)−ω2

ω2 − f 2
k2W (z)=0, (7a)

W ′(0)=− gk2

ω2 − f 2
W (0), W (1)=0; W (0)=0, W (1)=0. (7b, c)

The solution of Problem (7b) is obtained by expanding the sought W (z)=∑∞
i=0 Ci zi and

the function µ(z)=∑∞
i=0µi zi into a power series. Since the equations obtained are to be

satisfied for every z, the coefficient of every z-power will be zero. Thus, we obtain a recur-
rent system of linear equations in Ci . From the boundary equation at the surface we find
C1 = −C0gk2

/(
ω2 − f 2

)
. On using the bottom conditions, we find the dispersion equation

relating oscillation frequencies ω and wave numbers k with coefficients µi :

F =1+
N∑

i=1

ri =0, r1 =−λg, r2 =−a/2, r3 =− (λµ1 +ar1) /6,

r4 =− (r2a + [µ2 +µ1r1]λ) /12, a =λµ0 +b, b =−ω2λ, λ= k2

ω2 − f 2
,

rm =− 1
m(m −1)


λ


m−3∑

j=1

µ j rm−2− j +µm−2


+ rm−2a


 , m ≥5. (8)

4. Solution of the inverse problem for the frequency equation. Power-series method

Consider the case when the function µ(z) is a square parabola µ (z)=−a2
0 z2 + a1z + a2. The

values of the coefficients a0,a1,a2 are assumed to be known. We set the values of ω and derive
the values of k from the frequency equation. For the inverse problem, using the known pairs{
ω2, k2

}
, we reconstruct the values of the parameters µ(z). We now substitute in the frequency

equation the number of pairs
{
ω2, k2

}
equal to the number of parameters µ(z). This yields

a system of nonlinear equations. This system was solved by Newton’s method. Consider the
problem of non-uniqueness of the obtained parameters of the function µ(z). Let us look at the
frequency equation in the parameter a1 for fixed values of a0 and a2. Let us plot the function

Φ=
∑

i

F2
(

k2
i ,ω

2
i ,a0,a1,a2

)
.

Figure 1 shows the graphs of the function. Line 1 corresponds to the values of
{
ω2, k2

}
only for the first dispersion curve. Line 2 corresponds to the values of

{
ω2, k2

}
only for the

second dispersion curve. Line 3 corresponds to the values of
{
ω2, k2

}
for both dispersion

curves. Let us analyse the graphs. On using the pairs
{
ω2, k2

}
for the first or the second dis-

persion curves only, the function Φ each time has two minima. In plotting the graph using the
values of

{
ω2, k2

}
simultaneously from both dispersion curves, only a single minimum remains

at the exact value of a1. Making use of the
{
ω2, k2

}
values taken from different dispersion

curves ensures uniqueness.
This is one of the possible supplementary conditions for the unique reconstruction of

the Sturm-Liouville operator. Herewith, the calculation accuracy depends on the distances
between the spectral numbers corresponding either to various curves or to different bound-
ary conditions.
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Figure 1. The graphs of the function Φ.

Table 1 shows the reconstructed parameters of the function µ(z) with various numbers
of significant digits used in setting the values of the pairs

{
ω2, k2

}
. The exact values of the

parameters are: a0 =6·25,a1 =6·25,a2 =1.

5. Asymptotic construction of the problem solution

If the buoyancy-frequency function shows a large gradient, the power-series method cannot
be applied. In this case, the solution of the problem is constructed by means of asymp-
totic formulae using the WKB (Wentzel-Kramers-Brillouin) method and a parabolic cylinder

(Weber) function. By replacing the variable z = ξ t +β; ξ = 4
√(
ω2 − f 2

)/(
4k2a2

0

)
, β=a1

/
(2a0),

we reduce the initial-boundary-value problem (7a, b) to the following one (a0 ≡a):

W ′′(t)+
(

p + 1
2

− t2

4

)
W (t)=0, p = ak

2
√
ω2 − f 2

(
a2

1

4a4
+ a2 −ω2

a2

)
− 1

2
,

1
ξ

dW

dt
=− gk2

ω2 − f 2
W, t =− a1

2a2ξ
, W

(
a1

2a2ξ

)
=0.

(9)

5.1. BUILDING UP THE SOLUTION USING PARABOLIC CYLINDER FUNCTIONS

The exact solution of the last equation is found by making use of parabolic cylinder functions
[16, pp. 124–126]:

WD =C1 Dp(t)+C2 Dp(−t). (10)

Table 1. Reconstructed parameters of the function µ(z).

Number of significant
digits

Reconstructed value (reconstruction error)

a2 a1 a0

4 1·038 (3·8%) 6·277 (0·43%) 6·448 (3·17%)
3 1·057 (5·7%) 6·306 (0·9%) 6·553 (4·8%)
2 0·7464 (25·3%) 6·19 (0·95%) 5·178 (17·1%)
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The integral approximation of parabolic cylinder functions has the following form [16]:

Dp(t)=
√

2
π

et2/4
∫ ∞

0
e−ξ2/2ξ p cos

(
tξ − pπ

2

)
dξ, Re p>−1. (11)

Several terms of the asymptotic expansion have been obtained by the method of steepest
descent at |t |→∞, |p|→∞ in the range t2

/|p|<4.
According to [17, pp. 52–54], the method of steepest descent runs as follows. For large val-

ues of the parameter τ , the value of the integral
∫

C eτϕ(z) f (z)dz is determined by the part of
the integration path C , on which Re(ϕ(z)) is large compared with the values on the remain-
ing part of the C . The path C is distorted in such a way that the contour should go through
the saddlepoint z0 where ϕ′(z0)=0 and Imϕ(z)=const on this contour. The first term of the
derived asymptotic expansion has the form:

Dp(t)=γ cos


 t

4

√
−t2 +4p +2− pπ

2
+
[

p + 1
2

]
arcsin

t

2
√

p + 1
2




+O

(
1√

t2 +|p|

)
, γ = 2e−p/2−1/4

(
p +1

/
2
)p/4

4
√−t2 +4p +2

. (12)

By substituting asymptotic form (12) in (10) and satisfying the boundary conditions (9), we
obtain the solutions of the Problem (7a, b) for large values of k.

5.2. PROBLEM SOLUTION CONSTRUCTED BY THE WKB METHOD

Let us construct the solution of the Problem (7a, b) by the WKB method. The WKB solu-
tions of Equation (7) have the form [18, pp. 281–282]:

WW K B = W1 + W2, W1,2 = C1,2√
ψ(z)

exp
(

±iλ
∫ z

0
ψ(ξ)dξ

)
,

λ= k2

ω2 − f 2
, λ→∞, ω2> f 2, ψ(z)=

√
−a2z2 +a1z +a2 −ω2, ψ2 (z)>0.

(13)

Calculate the integrals. This yields an expression for solving Equation (7). This expression
fully coincides with the solution resulting from (10), (12).

WBK E = 1
4
√

−a2z2 +a1z +a2 −ω2
(C1 sinα+C2 cosα),

(14)

α=λ


(
2a2z −a1

)√−a2z2 +a1z +a2 −ω2

4a2
− 4a2

(
a2 −ω2

)+a2
1

8a3
arcsin

a1 −2a2z√
4a2

(
a2 −ω2

)+a2
1


 .

Estimate the error of the WKB solution having the following form:

‖V ‖≤ b1C

b (bλ−b1)
, where V (z)= W (z)− WW K B(z), C = const>0,

b =min
{

a2, −a2 +a1 +a2 −ω2
}
, b1 =

∣∣−8a2
(
a2 −ω2

)−2a2
1

∣∣
min{a2

2, (−a2 +a1 +a2 −ω2)2} .
(15)

This formula determines the limitations of the applicability of the asymptotic solution con-
structed using the WKB method for large values of k.
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The WKB solution (14) and the solution constructed using the first term of the asympt-
otics of a parabolic cylinder (12) coincide. By satisfying the boundary conditions we obtain
the frequency equation. Introduce the function composed of a sum of square frequency equa-
tions for various ω, k. These values are found while solving the spectral problem (7a, b). Solve
the inverse problem of reconstructing the parameters of fluid stratification under the para-
bolic profile of the function µ(z). On using the value of ω, k with three significant digits, non-
homogeneity parameters are calculated with an accuracy of up to 10%. On setting the input
data with two significant digits, we attain a reconstruction accuracy of 15%.

5.3. ASYMPTOTIC CONSTRUCTION OF THE SOLUTION FOR A FINE-STRUCTURE CASE

By fine structure we understand here the presence of a large gradient of the function µ(z) in
the vicinity of one or several points. Such a singularity of the function µ(z) can be simulated
by representing it in the form:

µ(z)= A0 + A1α1
(√
π
)−1 e−α2

1(z+z1)
2
, A0, A1, α1 − const, z ∈[−H,0],

A1 = AH, α=α1 H.
(16)

The parameter A0 characterizes the mean stratification. The parameter A1 reflects the jump
in the squared buoyancy frequency, the value z1 is the pycnocline depth (z1>0), and 1

/
α is

the pycnocline width.
Solve the considered problem (5a, c) in the “rigid lid” approximation. The axis z is

assumed to be counter-gravity. The solution is sought in the following form [3, pp. 123–124]:

W − =C1 exp
(

iβz +
∫ z

0
y−(ξ)dξ

)
+C2 exp

(
−iβz +

∫ z

0
y−∗ (ξ)dξ

)
, −z1 ≤ z ≤0,

W + =C3 exp
(

iβ(z + H)+
∫ z

−H
y+(ξ)ξ

)
+C4 exp

(
−iβ(z + H)+

∫ z

−H
y+∗ (ξ)dξ

)
,

(17)

−H ≤ z ≤−z1, β2 = A0 −ω2

ω2 − f 2
k2, y±, y±∗ are complex conjugate.

Satisfy the boundary conditions at z = 0 and z = −H and the continuity conditions of the
solutions W − (z1)= W + (z1) ,

(
W − (z1)

)′ = (
W + (z1)

)′. This yields a system of equations that
are homogeneous with respect to the constants C1, C2, C3, C4. On equating this system deter-
minant to zero, we obtain a dispersion equation for the initial problem. For α→ ∞ (to an
accuracy of up to ε2 = 1/α2) it has the following form:


1+ ε

A
(
(βH)2 + (k H)2

)
√
π
(

A0 − f 2
)


 (βH) sin (βH)+ A

(βH)2 + (k H)2

A0 − f 2

×
[

1+ ε
(

1−
√

2
2

)
A√
π

(βH)2 + (k H)2

A0 − f 2

]
× sinβz1 sin (β (z1 − H))=0. (19)

In the limiting case ε=0, Equation (19) converges to the following:

βH sin(βH)= (βH)2 + (k H)2

A0 − f 2
A sin ((H − z1) β) sinβz1. (20)
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The roots of Equation (20) are asymptotics at ε→ 0 of the roots of Equation (19). The
asymptotics of the roots of Equation (20) for large values of n or m have the following form:

βn H =Un + δn, βm H = Vm + δm, n 1, m 1; n, m ∈ Z;

Un = nπ

1−q
, Vm = mπ

q
, q = z1

H
, M = A0 − f 2

A
, (21)

δn = MUn sin Un

(−1)n (1−q)
[
(k H)2 +U 2

n

]
sin (qUn)− M (sin Un +Un cos Un)

,

δm = MVm sin Vm

(−1)m q
[
(k H)2 + V 2

m

]
sin ((1−q)Vm)− M (sin Vm + Vm cos Um)

. (22)

Equations (21), (22) give the solution of the spectral problem (5a, c).

5.4. RECONSTRUCTING BUOYANCY FREQUENCY IN AN ANALYTIC FORM FOR SYMMETRIC

PROFILES

By standard techniques, the original problem (5a, c) can be reduced to the solution of an inte-
gral equation with a symmetric positive-definite kernel:

W (z)=λ
∫ H

0

(
µ(ξ)− f 2

)
W (ξ)G(ξ, z)dξ, where (23)

G (ξ, z)=
{

sinh (kξ) sinh (k (H − z)) , 0≤ ξ ≤ z
sinh (kz) sinh ((H − ξ)) , z≤ ξ ≤ H

, λ= k

sinh (k H)
(
ω2 − f 2

) . (24)

After symmetrization of Equation (23), we apply the theorem on the trace of an integral
equation (Mercer’s theorem [19, p. 210]). We obtain the equality [3, Equation (3.6.1), p. 239]:∫ H

0

[
µ(z)− f 2

] sinh(kz) sinh(k(H − z))

sinh(k H)
dz = 1

k

∑
j

γ 2
j (k)= F(k), where γ 2

j (k)=ω2
j (k)− f 2

(25)

Here ω j (k) stand for the eigenfrequencies of Problem (5). Boundary-value problem (5) gives
the curves ω2

j

(
k2
)
.

Assume k to be an independent variable. Equality (25) will be interpreted as a first-order
Fredholm integral equation. In dimensionless variables this equation has the form:∫ 1

0
ϕ(u)L(x,u)du = F̃(x), where x = k H, z =u H, ϕ (u)=µ(u)− f 2, (26)

L(x,u)= sinh(xu)sinh(x(1−u))

sinh(x)
, F̃(x)= 1

x
F
( x

H

)
. (27)

Integral equation (19) admits a closed-form solution for the case when the function µ(z) is
symmetrical about the segment centre.

We have L(x,u)= 1
2sinh(x)

(cosh(x)− cosh(2xu − x)). Then it follows from (26) that:

coth(x)
2

∫ 1

0
ϕ(u)du − 1

4 sinh(x)

∫ 1

0
ϕ(u)e

2x
(

u− 1
2

)
du − 1

4 sinh(x)

∫ 1

0
ϕ(u)e

−2x
(

u− 1
2

)
du = F̃(x).

(28)
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For the first integral, we replace the integration variable as follows: u =1−v. Then v will be
substituted again for u. Reduction by exp(x) yields:

∫ 1

0
(ϕ(u)+ϕ(1−u)) e−2x ·u du =

(
C coth(x)−2F̃(x)

)(
1− e−2x

)
, C =

∫ 1

0
ϕ(u)du. (29)

Let x →∞ in the last equality. We find: C =2F̃ (∞). The right-hand side of the last equality
is interpreted here as the Laplace transform of a piecewise continuous function. We obtain
[20, Equation (4.2), p. 36]:

ϕ(u)+ϕ(1−u)= 1
iπ

∫ C0+i∞

C0−i∞

(
F̃(∞)− F̃(x)

)(
1− e−2x

)
e2x ·udx . (30)

The function µ(z) is assumed to by symmetric about the segment centre, i.e., ϕ(u)=ϕ(1−u).
Then

ϕ(u)= 1
2iπ

∫ C0+i∞

C0−i∞

(
F̃(∞)− F̃(x)

)(
1− e−2x

)
e2x ·udx, 0<u<1. (31)

We take x = kH, z =uH and have:

µ(z)− f 2 = H

2iπ

∫ C1+i∞

C1−i∞

(
F̃(∞)− F̃(k H)

)(
1− e−2k·H) e2k·zdk, C1 =C0

/
H,

F̃(kH)= 1
kH

∑
j

(
ω2

j − f 2
)
.

(32)

Equation (32) determines the function µ(z) by its eigenfunctions if it is symmetric about the
segment centre. For the case of a symmetric buoyancy frequency profile it has been derived
in analytical form.

We present the calculation result for the function µ (z) described in Section 5.3. The eigen-
frequencies are obtained by the Equations (21) and (22). The results are presented in Tables
2 and 3.

6. Hydroelastic analogy

6.1. DISTRIBUTION OF ELASTIC-LAYER DENSITY OVER RESONANT FREQUENCIES OBTAINED

FROM THE FREQUENCIES OF ITS ANTIPLANE VARIATIONS

Consider the boundary-value problem describing antiplane variations of an elastic layer which
is non-homogeneous in thickness. Assume that the layer be bounded by upper and lower

Table 2. The reconstruction accuracy of the function µ(z) versus
the number of significant digits (four terms in the trace).

Function µ(z)
reconstruction
error in the norm

Number of significant digits in ω and k

2 3

In the space C : 16% 12·80%
In the space L1: 13% 10·60%
In the space L2: 27% 12·60%
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Table 3. The reconstruction accuracy of the function µ (z) versus the number
of the terms in the trace for three significant digits in ω and k.

Function µ (z)
reconstruction
error in the norm

Number of terms in the trace

3 4

In the space C 12·70% 12·50%
In the space L1 9·90% 8·80%
In the space L2 11·50% 9·30%

fixed. This studied problem for the amplitude function W (z) is reduced to the following
Sturm-Liouville problem:

W ′′(z)+
(
µ(z) ω2 − k2

)
W (z)=0, W (0)=0, W (H)=0, (33)

where µ(z)= ρ (z)
/

G;ρ (z) is the law of the thickness distribution of the elastic layer, G
is the shear modulus, ω is the eigenfrequency (free-oscillation frequency) and k is the wave
number.

Let us represent the function µ(z) and W (z) as µ(z)=∑
iµi cos

iπ ·z
H
,W(z)=∑

i Wi sin
iπ ·z

H
and substitute these series in (33). By equating coefficients for similar harmonics, we obtain
a system of linear equations in Wi . Let us confine ourselves to a finite number of harmon-
ics and equate the system determinant to zero. We obtain a frequency equation of the form
F
(
µi , k2,ω2

)= 0. Assume the coefficients µi (i = 0,1,2) to be pre-specified. From the fre-
quency equation we find ω2

j

(
k2
)
( j =1,2, . . . , J ).

Pairs of ω2
j

(
k2
)
( j = 1,2, . . . , J ) are known, even though with a certain error. On substi-

tuting these pairs in the frequency equation, we obtain a system of nonlinear equations in
µi . If the values of the pairs ω2

j

(
k2
)

are taken from different dispersion curves for j = j1
and j = j2, the parameters µi are determined uniquely. If the values of the pairs ω2

j

(
k2
)

are
taken from a single dispersion curve, the recovered parameters µi will not be unique. Let us
study how the accuracy of the set input data affects the accuracy of the obtained function

µ(z). As a specific example let us consider µ(z)= A0 + A1 cos
απ ·z

H
, with A0 = 1, A1 = 0·1,

α=2·01, H =1.
Table 4 shows the relative error in the metrics L1 and L2 used for the reconstruction of

the function µ(z) depending on the number of significant digits specified for ω j when two
harmonics are used.

Table 4. Error in the reconstruction of the function µ(z) versus
the number of significant digits set for ω j .

Number of significant digits ε2 (L2)% ε1 (L1)%

3 0·36 0·2
2 7·42 4·8
1 110 51
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Let us analyse the table. The density distribution of the non-homogeneous layer can be
reconstructed from two basic resonant frequencies. The accuracy is sufficient with two signifi-
cant digits in the frequencies.

6.2. GEOMETRICAL NON-HOMOGENEITY OF A ROD DETERMINED FROM THE RESONANT

FREQUENCY OF ITS FREE OSCILLATIONS

Consider the problem of longitudinal oscillations of a non-homogeneous rod with a variable
section [21, Equation (20.1), p. 169]. The rod is fixed at both ends:

m
∂2u

∂t2
= ∂

∂x

(
E F

∂u

∂x

)
, u(0)=0, u(l)=0. (34)

Here u = u(x, t) is the longitudinal displacement of the rod points, m = m(x) is the mass of
the rod unit length, m =ρF, ρ=ρ(x) designates the law of material density distribution along
the rod, E = E(x) is Young’s modulus, F = F(x) is the cross-sectional area. We seek time-peri-
odic solutions: u (x, t)=U (x)eiω t . Then, for the amplitude function U (x), we obtain an equa-
tion with variable coefficients. Now we introduce the notation, E F =ψ,m/E F =ρ/E =1

/
c2,

m = m0 + m1 (x) ,m1 = ρ1 F,m0 = const,m0
/

E0 F = ρ0
/

E0 = 1
/

c2
0. Here, c = c (x) is the local

sound velocity for an arbitrary density ρ(x) and for arbitrary Young’s modulus E(x), c0 des-
ignates the sound velocity for constant density ρ0 =const and constant Young’s modulus E =
E0 =const. In the equation for the amplitude function we perform the following substitutions:
U = y

/√
ψ, x = lξ, y(x)= y(lξ)= f (ξ) and introduce the following notations:

ω2l2
/

c2
0 =Ω2, ρ1

/
ρ0 =ϕ (ξ) , (35)

µ(ξ)=1
/

4
(
η′/η)2 −1

/
2
(
η′′/η) , η(ξ)=ψ(lξ)=ψ(x)= E F(x). (36)

Then, for the function f at ρ1 =0, we obtain the boundary-value problem:

f ′′(ξ)+
(
µ(ξ)+Ω2

)
f (ξ)=0, f (0)=0, f (1)=0. (37)

Let us show the non-uniqueness of the solution of the inverse problem about obtaining
the rod geometrical non-homogeneity from the resonant frequencies of its free oscillations.
Indeed, if the function µ(ξ) is reconstructed by any of the above-mentioned methods from
the spectral numbers of Problem (37), then it can be used to find η(ξ)=ψ(x)= E F(x) from
(36). At the same time, it is possible to add to the obtained function η(ξ) also the function
η0 (ξ) satisfying the homogeneous equation in (36) at µ(ξ)= 0 : η0(ξ)= (aξ +b)2 = E F(x)=(a

l
x +b

)2
where a and b are arbitrary constants.

Note that, if the rod cross-section is taken with such a profile F(x), then the resonant
oscillation frequencies of such a rod that is non-homogeneous in length coincide with the res-
onant frequencies of a homogeneous rod with constant longitudinal cross-section.

6.3. ROD NON-HOMOGENEITY DETERMINED FROM ITS BENDING VIBRATIONS

6.3.1. Problem statement
In the linear statement, consider the problem about bending vibrations of a pivoted rod. The
rod is assumed to be loaded longitudinally by the force p (x) [21, Equation (20.1), p. 169]

E J
∂2 f

∂x2
=−p f + M. (38)
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Here f is the road deflection (blend??), E = E(x) is Young’s modulus, J = J (x) stands for
the moment of inertia of the cross-section with respect to the neutral axis, M is the bending
moment of the rod with respect to the principal central axis due to other forces aside from
the longitudinal forces p(x); the axis Ox is directed along the rod.

Differentiate Equation (38) twice with respect to x . We obtain [21, Equation (18.1), p. 148]

∂2

∂x2

(
EJ
∂2 f

∂x2

)
+ ∂2

∂x2 (p f )− ∂2 M

∂x2
=q (x, t) . (39)

where q (x, t) is the distributed load on the rod. In the absence of an external active distrib-

uted inertial load, −ρF
∂2 f

∂t2
is the distributed load [21]. Here, ρ=ρ(x) designates the material

density, F = F(x) stands for the cross-sectional area of the rod, and t is the time. Then it fol-
lows from (39):

∂2

∂x2

(
EJ
∂2 f

∂x2

)
+ ∂2

∂x2 (p f )=−ρF
∂2 f

∂t2
. (40)

Boundary conditions for a pivoted rod have the form [21, p. 150]

f (0)=0,
∂2 f

∂x2

∣∣∣∣∣
x=0

=0, f (l)=0,
∂2 f

∂x2

∣∣∣∣∣
x=l

=0. (41)

The origin of coordinates is taken to be at the left-hand end of the beam.
Impose the condition of time periodicity

f

(
t + 2π

ω

)
= f (t) . (42)

Here ω= 2π
T

is the frequency oscillation, T is the oscillation period.
The solution of Equation (40) is sought as

f (x, t)= y (x) eiω t . (43)

For the function y(x), we obtain the following boundary-value problem [21, p. 148]:

d2

dx2

(
E(x)J (x)

d2 y

dx2

)
+ d2

dx2 (p (x) y)=ρ(x)F(x)ω2 y,

y (0)=0, y′′ (0)=0, y (l)=0, y′′ (l)=0.

(44)

The
{
ω j
}
, j =1,2, . . . , will be resonant frequencies of bending (flexural) vibrations of a non-

homogenous rod. The rod non-homogeneity is due either to the geometrical non-homogeneity
(J (x), F(x)), or the physical one (E(x), ρ(x)), or to the non-homogeneity of the longitudinal
force p(x).

The following problem is now stated: by making use of the known resonant frequencies
ω j , how can we determine the character of the rod non-homogeneity?
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6.3.2. Problem statement for the particular case
Let E(x)= E = const, J (x)= J = const, p(x)= 0, and ρ(x)F(x)= m(x) be the linear mass
of the rod. Represent m(x) as m(x)= m0 + m1(x),m0 = const. Here m0 = ρ0 F is the linear
mass of a homogeneous rod with density ρ0, and m1 (x) is the sought linear mass of non-
homogeneity along the rod.

Then we have

d4 y

dx4
−α4 y = m1(x)

m0
α4 y ≡Φ (x) , α4 = m0ω

2

EJ
= const,

y(0)=0, y′′(0)=0, y(l)=0, y′′(l)=0.

(45)

6.3.3. Derivation of the frequency equation
Denote the right-hand side of Equation (45) by the function Φ(x). Let us temporarily con-
sider it to be known. Equation (45) is solved by the method of variation of arbitrary
constants and yields:

y(x)=
∫ 1

0

m1(ξ)

m0
G(x, ξ, α)y(ξ)dξ, (46)

G(x, ξ, α)= α

2

[
Gi (x, ξ)

sinα
− Gh(x, ξ)

sinhα

]
. (47)

Here,

Gi (x, ξ)=
{

sin(α ξ) sin (α(l − x)) , 0≤ ξ ≤ x
sin (α x) sin (α(l − ξ)) , x ≤ ξ ≤ l

, (48)

and

Gh(x, ξ)=
{

sinh (α ξ) sinh (α(l − x) , 0≤ ξ ≤ x
sinh (α x) sinh (α(l − ξ)) , x ≤ ξ ≤ l

. (49)

We write out the integrals in Equation (46) using arbitrary quadrature formulae and
assume that the discrete values of x coincide with Gaussian nodes for (46), xn = ξn . We
obtain a system of homogeneous equations in y(ξn). The determinant of this system is a
frequency equation of the bending vibrations of the rod with arbitrarily distributed mass
along it.

Consider the case of a localized mass m1:

m1(x)

m0
= Aδ (x − x1) . (50)

where A is a dimensionless constant, δ(x) is the Dirac function, and x1 is the coordinate of
the localized mass.

On substituting (50) in (46) we obtain

y(x)= AG(x, x1, α)y(x1). (51)

Assume x = x1. Reduce both sides by y(x1). We derive the frequency equation for this partic-
ular case as follows:

1= A
α

2

[
sin(α x1) sin (α(1− x1))

sinα
− sinh (αx1) sinh (α(1− x1))

sinhα

]
, (52)
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or

2 sinhα sinα= Aα [sin (αx1) sin (α (1− x1)) sinhα− sinh (αx1) sinh (α (1− x1)) sinα] . (53)

Equation (53) is the frequency equation of the bending vibrations of the rod with the local-
ized mass at the point x1 with no allowance made for the longitudinal force.

6.3.4. Solution of the frequency equation
From Equation (53) we derive asymptotic formulae for the roots. Let A→0. Then, for x1 →0,
it follows from (53) that

ωn ≈ 1
l2

√
EJ

m0
π2n2

(
1− Aπ2n2x2

1

)
, Aπ2n2x2

1 �1. (54)

For the case x1 →1 in Equation (54) x1 should be substituted for (1− x1). Let A →∞. Then
we have from (53) that

ω1 ≈ 1
l2x1 (1− x1)

√
3EJ

Am0
, x1 ≥ δ>0, 1− x1 ≥ δ>0, δ= const. (55)

6.3.5. Solution of the inverse problem
In the general case, the localized-mass position is unknown. Then, from two base frequencies
ω1 and ω2, two values α1 and α2 are obtained. They are successively substituted in Equa-
tion (53). Then the obtained equalities are divided, which yields an equation for locating the
position x1 of the localized mass.

sinhα1 sinα1

sinhα2 sinα2

= α1

α2

sin (α1 x1) sin (α1 (1− x1)) sinhα1 − sinh (α1x1) sinh (α1 (1− x1)) sinα1

sin (α2 x1) sin (α2 (1− x1)) sinhα2 − sinh (α2x1) sinh (α2 (1− x1)) sinα2
. (56)

From Equation (56), x1 is found. In doing this, we only select values from 0 ≤ x1 ≤ 1.
From the obtained value x1 from (53) A is determined for α=α1 or α=α2. Since Equation
(56) is transcendental in x1, the solution of the inverse problem may prove to be non-unique.
In order to select a unique solution, either supplementary conditions should be imposed, or
different frequencies should be set and the following functional should be minimized with
respect to the parameters A and x1:

Ψ(x1, A)=
N∑

n=1

(Ψ1n − AΨ2n (x1))
2, where, Ψ1n = sinαn, (57)

and

Ψ2n = αn

2

[
sin (αn x1) sin (αn (1− x1))− sinαn sinh (αn x1) sinh (αn (1− x1))

sinhαn

]
. (58)

Here, N is the number of known resonant frequencies, αn =ωnl2 4

√
m0

E J
.

From the equation
∂Ψ (x1, A)

∂A
=0 we obtain an expression for the parameter A as a function

of x1:

A ≡ A (x1)=
N∑

n=1

Ψ1nΨ2n (x1)

/
N∑

n=1

Ψ2
2n
(x1). (59)
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By substituting this value of A in the equation
∂Ψ (x1, A)

∂x1
= 0, we finally obtain the fol-

lowing equation from which to obtain the points x1:

A(x1)

N∑
n=1

Ψ′
2n (x1) [Ψ1n (x1)− A (x1)Ψ2n (x1)]=0. (60)

By means of (60), from the obtained x1, the corresponding values of A are calculated.
In Tables 5 and 6 the accuracy at which the parameters A are obtained and x1 are given

versus the accuracy of the input data. The accurate values are x1 =0·1, A =1. From Tables 5
and 6, making use of two frequencies with two significant digits, we may calculate the param-
eter A to an accuracy of up to 12·87%. The parameter x1 is found to an accuracy of up to
11·52%. Let three frequencies be specified to the same accuracy. The above-mentioned param-
eters are determined to an accuracy of up to 2·04% and 0·31%, respectively.

7. Conclusion

This work presents new methods for the solution of inverse Sturm-Liouville problems. The
suggested methods make it possible to determine structural non-homogeneity in the ocean
column and defects in certain elements of engineering structures.

The oceanological problems are solved using remote sensing from Artificial Earth Satel-
lites for investigating the free ocean surface and studying glitters on it. The glitter rate is used
to determine the spectrum of the internal waves. A detailed description of the procedure is
given in [2].

In our work, ocean non-homogeneity is determined by a study of the internal wave spec-
trum. Such non-homogeneities may be bathyscaphes, fish shoals, submarines, scuba divers, etc.
The detection of fish shoals can significantly reduce the costs incurred by fishing vessels look-
ing for fish shoals.

Detecting imperfections and defects of engineering constructions will first provide ade-
quate quality control and, secondly, can help to check the structure of elements out of view.
The same methods can be employed to check baggage during customs inspections and secu-
rity checks at airports. The same methods can replace the X-ray for examination of osseous

Table 5. Reconstruction of the parameters x1 and A from two frequencies.

Number of significant digits x1 (error %) A (error %)

1 0·179216 (79·22%) 0·620922 (37·91%)
2 0·111519 (11·52%) 0·871245 (12·87%)
3 0·100547 (0·55%) 0·992408 (0·76%)

Table 6. Reconstruction of the parameters x1 and A from three frequencies.

Number of significant digits x1 (error %) A (error %)

1 0·105603 (5·60%) 1·075803 (7·58%)
2 0·099693 (0·31%) 1·020441 (2·04%)
3 0·99972 (0·03%) 1·000714 (0·07%)
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tissues to detect fissure fractures and sarcomas. These methods make it possible to monitor a
patient’s condition without exposure to radiation.

The topic calls for further investigation and generalization. We deem it necessary to study
inverse problems for membranes, shells, composite and viscoelastic media. Inverse problems
should be solved for media contacting other media, e.g. liquid, composite and viscoelastic. It
is also necessary to consider horizontal non-homogeneity. The work can also be further devel-
oped mathematically. It is necessary to transfer from particular problems treated here to a
general formulation of these problems. Topics such as the uniqueness of the problem solution
are worth our attention, which also requires formulating (preferably in a general form) sup-
plementary conditions required for it. The conditions should also be investigated under which
the inverse spectral problems cannot be solved.

Of interest is also the study of dynamic inverse problems consisting in the determination
of the medium structure from its response to external disturbances. Nonlinear inverse prob-
lems are also worth considering.

Upon some further development the suggested methods could be applied to studying
blood circulation in vessels to detect thrombus formation. This method could be applied to
the examination of vascular walls checking for hemoliths.

These methods can be useful for controlling medium non-homogeneity, motion of bodies
in fluid and gas, laws of deformation of elastic bodies and bodies with more complicated rhe-
ological properties.

The solution of control problems will make it possible to send a probing weather balloon
aloft to a pre-specified altitude. Solving the problems of non-destructive control will make it
possible to provide body-strain limitations. The pre-specified law of flow past bodies will help
to reduce the body resistance and drag during motion in the fluid or air.
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